Extraordinarily cold temperatures
in the winter of 2010/2011 caused the most massive destruction of the
ozone layer above the Arctic so far: The mechanisms leading to the first
ozone hole above the North Pole were studied by scientists of the KIT
Institute of Meteorology and Climate Research (IMK). According to these
studies, further cooling of the ozone layer may enhance the influence of
ozone-destroying substances, e.g. chlorofluorocarbons (CFC), such that
repeated occurrence of an ozone hole above the Arctic has to be
expected.
About a year ago, IMK scientists, together with colleagues from Oxford,
detected that ozone degradation above the Arctic for the first time
reached an extent comparable to that of the ozone hole above the South
Pole. Then, the KIT researchers studied the mechanisms behind. Their
results have now been published in the journal “Geophysical Research
Letters”.
According to IMK studies, occurrence of the Arctic ozone hole was mainly
due to the extraordinarily cold temperatures in the ozone layer that is
located at about 18 km height in the stratosphere, i.e. the second layer
of the earth’s atmosphere. There, chlorine compounds originating from
chlorofluorocarbons (CFC, e.g. greenhouse gases and refrigerants) and
other pollutants are converted chemically at temperatures below -78°C.
These chemical conversion products attack the ozone layer and destroy it
partly. One of the main statements in the study: If the trend to colder
temperatures in the stratosphere observed in the past decades will
continue, repeated occurrence of an Arctic ozone hole has to be
expected.
The team of IMK researchers analyzed measurements of the chemical
composition of the atmosphere by the MIPAS satellite instrument
developed by KIT. In addition, model calculations were made to determine
concrete effects of further cooling of the ozone layer. “We found that
further decrease in temperature by just 1°C would be sufficient to cause
a nearly complete destruction of the Arctic ozone layer in certain
areas,” says Dr. Björn-Martin Sinnhuber, main author of the study.
Observations over the past thirty years indicate that the stratosphere
in cold Arctic winters cooled down by about 1°C per decade on the
average. According to Sinnhuber, further development of the ozone layer
will consequently be influenced also by climate change. He points out
that the increase in carbon dioxide and other greenhouse gases will warm
up the bottom air layers near the ground due to the reflection of part
of the thermal radiation by the bottom layer of the atmosphere towards
the earth’s surface, but also result in a cooling of the air layers of
the stratosphere above, where the ozone layer is located.
After the first discovery of the Antarctic ozone hole in the mid-1980s,
CFCs were rapidly identified to be the cause and their use was
prohibited by the Montreal Protocol of 1987. However, it will take
decades until these substances will have been removed completely from
the atmosphere. “Future cooling of the stratosphere would enhance and
extend the impacts of these substances on the ozone layer,” says Dr.
Björn-Martin Sinnhuber. It is now necessary to study potential feedbacks
on climate change.
The present study is embedded in long-term programs of IMK in this
field. In December, the researchers started a new measurement campaign
in the Arctic ozone layer in Northern Sweden using a high-altitude
aircraft. Again, they encountered extraordinarily low temperatures.
However, it is not yet possible to predict whether temperatures will be
low enough over a longer term to cause a comparably large degradation of
ozone in this winter.
More information: Geophysical Research Letters, volume
38, doi:10.1029/2011GL049784.
Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.